2025 March 7 EURECA at UA-Steward

Unveiling Early Galaxy Evolution Through Gas Kinematics

Yi Xu (Ph.D student, Univ. of Tokyo)

Current in office 260 of UA-Steward

In collaboration with Masami Ouchi, Kimihiko Nakajima,

Yuichi Harikane, Hidenobu Yajima, Yuki Isobe, et al.

Galaxy Evolution

"Many aspects of star and galaxy formation can be viewed as **a** cosmic tug-of-war between feedback and gravitational collapse"

--- Pathways to Discovery in Astronomy and Astrophysics for the 2020s

Tracer of gravity

Circular motions probe mass distribution including star, gas, and dark matter

Galaxies w/o ordered rotation: $M_{\rm dyn} = a\sigma_{\rm eff}^2 R_{\rm eff}/G$? Irregular Merger

Tracer of feedback

Turbulent motions are produced by feedback

Semenov et al. 2016

Outflows are connected to energy and momentum injection from supernovae, massive stars, and AGNs

More intense star formation produces stronger outflows

Stronger outflows suppress star formation

- Up to what redshift rotation curve can be used as a tracer of dynamical mass? Where is the earliest disk?
- How ordered rotation and turbulence evolve across cosmic time?
- How outflows depends on galaxy properties at different redshifts

Part I. Outflows at high redshift

Based on Xu et al. 2023 arxiv:2310.06614

Outflows at high z with JWST

Spatial extension on images

Broad emission line

Coptical cont.

Y. Zhang, ..., YX, et al. 2024

Zhu+2025

Dataset

130 galaxies at z~3-9 with H α or [OIII] $\lambda 5007$ detections

Detecting outflows

Broad wings tracing hot ionized outflows

Detecting outflows

detected in [OIII] and H α even with medium-resolution grating (R~1000)

Outflow velocity $v_{\text{out}} = |v_{\text{cent,out}} - v_{\text{cent,narrow}}| + \text{FWHM}_{\text{out}}/2$

Large scatters exist => careful treatment of subsamples are needed

Outflow detections are subject to data quality

Outflow velocity

- Outflow velocities are smaller at high redshift for the same SFR
- Dependence on stellar mass suggesting effect of gravitation

Discussions on outflows

Outflows are not fast enough to escape

Outflows and SF main sequence

Galaxies above SFMS drive stronger outflows

- We identify 30 out of 130 galaxies with outflow signatures with NIRSpec Medium, NIRSpec High, NIRcam WFSS data
- Outflow velocities can be governed by gravitation at 3<z<9
- Correlation between outflow incidence and SFMS indicates feedback is at play at high z

Part II. Earliest rotating disk

Based on Xu et al. 2024 ApJ

Target

GN-z11 at z=10.6 when the universe is ~500 Myr old $log(M_*/M_{\odot}) = 9.1$, SFR=21 M $_{\odot}/yr$

Image credit: NASA

Observations

JWST NIRSpec IFU

- G235M/F170LP covers 1.7-3.2 micron
- DDT 4426 (PI: Roberto Maiolino)
- Exposure time: 14 hours (7 hours more than M23)
- Prominent C III] emission
- New reduction from scratch

Image credit: NASA

Maiolino et al. 2023

Is C III] spatially resolved?

C III] is spatially extended over point-spread function (PSF)

Tracers of gas kinematics?

C III] kinematics

- C III] 1907,1909: marginally resolved doublet
- Two-component fitting in each high S/N spaxel
- Result
 - Clear velocity gradient $\Delta v_{\rm obs}/2\sigma_{\rm med} = 1.34^{+0.68}_{-0.98}$
 - Rotating disk at z=10.6?

Forward modelling of rotating disk

GalPak^{3D} model

- exponential disk
- arctan rotation curve
- convolved with line-spread function and PSF

Results:

Explained by a rotating disk

$$v_{
m rot} = 249^{+111}_{-118} \ {
m km \ s^{-1}}$$

 $\sigma = 92^{+16}_{-31} \ {
m km \ s^{-1}}$
 $v_{
m rot}/\sigma = 2.8^{+1.8}_{-1.4}$

Constraint on inclination is still difficult

v/sigma

Rotation-dominated disk in the first 500 Myr of the universe

Is this surprising?

- GN-z11 is massive for z=10.6
 => growing fast and possibly undergo weak feedback
- GN-z11 is compact => mass is concentrated in the center

Discussions: rotation curve and mass composition

Star and DM cannot account for v_{rot}

Discussions: rotation curve and mass composition

300 $v_{\rm c}(r) \, \left[{\rm km} \; {\rm s}^{-1}
ight]$ Total Star 0 10^{-1} 10^{0} 10^{1} r [kpc]

Star and DM cannot account for v_{rot} => needs large gas fraction

Discussions: rotation curve and feedback

- We identify velocity gradient in GN-z11 that could be given by a rotation-dominated disk at z=10.6
- The rotation velocity can be explained by a compact mass distribution with significant contribution from gas
- Large v/sigma and concentrated rotation curve may attribute to weak feedback such predicted by simulations

Can we resolve rotation curve at high z?

At slightly lower redshift than GN-z11

We need novel disk models!

REBELS-25 are clumpy in UV

due to dust extinction

MACS1149-JD1 (z=9.1) merger or SF clumps?

Rowland+2024

Tokuoka+2022

Bradač+2024

Mergers are preferably targeted by JWST NIRSpec IFU?

T. Kiyota, YX, et al. in prep.

Still many possibilities with current instruments

- Isolated, bright targets () proposed in Cycle 4
 - UNCOVER_10646 (z=8.511) and EGS_z910_44164 (z=8.612)
- Exciting observations can be done with JWST or ALMA

