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😀But at least some tricks work for galaxies!
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Case 1: traditional methods
ML-101: iris flowers classification

Image: https://www.embedded-robotics.com/wp-content/uploads/2022/01/Iris-Dataset-Classification-1024x367.png

Features 
(can be n-D pixels, 

measurements, etc.) 
[Length of the petal / sepal] 

[photometry /  
parametric shapes ]

Some linear algebra 
(Not a black box!) 

[Random Forest, SVM, etc.]

Classification 
[setosa, versicolor, virginica] 
[SF/QG/AGN with probability]

A very helpful notebook: https://github.com/Apaulgithub/oibsip_taskno1
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Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

arXiv: 2409.11464
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Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• DBSCAN (Ester et al. 1995): Density-based 
spatial clustering of applications with noise


• Arbitrarily-shaped clusters


• Arbitrary number of clusters (vs k-means)


• Robust to outliers and noise


• Fast
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Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• DBSCAN (Ester et al. 1995): Density-based 
spatial clustering of applications with noise


• Arbitrarily-shaped clusters


• Arbitrary number of clusters (vs k-means)


• Robust to outliers and noise


• Fast

• Grouping pixels based on their density in n-
D space (color, flux, etc)

• https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.DBSCAN.html

6



Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging
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Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• X = np.array([[x1, y1, flux1], …[xn, yn, 
fluxn]])


• eps: the parameter you need to tune


• min_samples: the min sample size to 
grow a cluster


• Then measure each clusters (n_pix, total 
flux, axis ratio, gini, AI, etc.)
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Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)
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Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using 
topographic features to separate 
objects in an image.

• Robust to noise and irregular shapes

• 1. The image is treated as a 
topographic surface.

• 2. The algorithm identifies catchment 
basins based on pixel intensity.

• 3. The algorithm floods basins from 
user-defined markers.

• 4. The algorithm separates each energy 
concentration region with watershed 
boundaries.

# necessary imports 
import numpy as np 
from skimage.filters import sobel 
from skimage.measure import label 
from skimage.segmentation import watershed 
from skimage.feature import peak_local_max 
from skimage.morphology import distance_transform_edt 
def deblending(input_image, rms_noise): 
    """ 
    Deblend a single-band image using a combination of thresholding, gradient magnitude, and 
watershed segmentation. 
    author: Yongda Zhu 
    Args: 
    input_image (2D numpy array): The input image to be deblended. 
    rms_noise (float): The RMS noise level of the input image. 
    Returns: 
    labels (2D numpy array): The deblended labels. 
    binary_mask (2D numpy array): The binary mask used for deblending. 
    """ 
    # Define a threshold for the bright regions (e.g., 3-sigma above the mean) 
    threshold = rms_noise * 3 
    binary_mask = input_image > threshold 
    # Compute the gradient magnitude 
    gradient_magnitude = sobel(input_image) 
    # Compute a distance map for the binary mask 
    distance = distance_transform_edt(binary_mask) 
    # Identify local maxima for watershed segmentation 
    local_maxi = peak_local_max(distance, footprint=np.ones((3, 3)), min_distance=5, 
labels=binary_mask) 
    # Convert local_maxi (coordinates) to a binary mask of the same shape as `binary_mask` 
    local_maxi_mask = np.zeros_like(binary_mask, dtype=bool) 
    local_maxi_mask[tuple(local_maxi.T)] = True  # Convert coordinates to a mask 
    # Create a markers array for watershed segmentation 
    markers, _ = label(local_maxi_mask) 
    # Apply watershed segmentation 
    labels = watershed(-distance, markers, mask=binary_mask) 
    return labels, binary_mask

Zhu+25, in prep
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Case 3: Neural Networks / Deep learning
Example 301: Vision Transformers (ViTs) — SAM by Meta

11https://segment-anything.com/
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Case 3: Neural Networks
Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248
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Case 3: Neural Networks
Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

• Code: https://github.com/morpheus-project/morpheus-core
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Case 3: Neural Networks
Example 303: Encoder-decoder — predict parameters directly from images

15

SegNet: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615
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Can be changed to parameters, 
e.g., Sersic index, etc.

SegNet: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615


Case 3: Neural Networks
Example 303: Encoder-decoder — predict parameters directly from images
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import tensorflow as tf 
from tensorflow.keras import layers, models 

# Define input shape (e.g., 64x64 grayscale image of a galaxy) 
input_shape = (64, 64, 1) 

# Encoder part 
def build_encoder(input_shape): 
    inputs = layers.Input(shape=input_shape) 
    x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')
(inputs) 
    x = layers.MaxPooling2D((2, 2))(x) 
    x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x) 
    x = layers.MaxPooling2D((2, 2))(x) 
    x = layers.Flatten()(x) 
    encoded = layers.Dense(128, activation='relu')(x) 
    return inputs, encoded 

# Decoder part 
def build_decoder(encoded_input): 
    x = layers.Dense(16 * 16 * 64, activation='relu')(encoded_input) 
    x = layers.Reshape((16, 16, 64))(x) 
    x = layers.Conv2DTranspose(64, (3, 3), activation='relu', 
padding='same')(x) 
    x = layers.UpSampling2D((2, 2))(x) 
    x = layers.Conv2DTranspose(32, (3, 3), activation='relu', 
padding='same')(x) 
    x = layers.UpSampling2D((2, 2))(x) 
    decoded = layers.Conv2D(1, (3, 3), activation='sigmoid', 
padding='same')(x) 
    return decoded 

# Sérsic profile prediction head 
def build_prediction_head(encoded_input): 
    prediction = layers.Dense(1, activation='linear', 
name='sersic_index')(encoded_input) 
    return prediction 

# Combine the model 
inputs, encoded = build_encoder(input_shape) 
decoded = build_decoder(encoded) 
prediction = build_prediction_head(encoded) 

# Define the complete model with two outputs: reconstruction and 
Sérsic index 
model = models.Model(inputs=inputs, outputs=[decoded, prediction]) 

# Compile the model 
model.compile(optimizer='adam', 
              loss={'conv2d_3': 'binary_crossentropy', 'sersic_index': 
'mse'}, 
              metrics={'sersic_index': 'mae'}) 

# Model summary 
model.summary() 

# galaxy_images = ...  # Shape: (num_samples, 64, 64, 1) 
# sersic_labels = ...  # Shape: (num_samples, 1) 
# model.fit(galaxy_images, {'conv2d_3': galaxy_images, 'sersic_index': 
sersic_labels}, epochs=10, batch_size=32) 

Build your own code:
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