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GPT: “go and use ML!”

Image: https://|ades.idies.|hu.edu
JADES Team
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G PT. 1 o and USe M L' 5y In this image, the two galaxies can be classified based on their
- g - visual morphology:

1. Galaxy on the left: @

e Appears elliptical or lenticular (SO), with a smooth,

featureless structure and a bright central core.

No visible spiral arms or disk-like features, which is

characteristic of elliptical or early-type galaxies.
2. Galaxy on the right:

e Clearly a spiral galaxy, with visible spiral arms and a

bright core.

e Likely a star-forming galaxy, given the structured arms

that may contain regions of active star formation.

Image: htt S:// adeS' IdleS. hu'edu This classification can be refined using tools such as machine
JADES Team

learning models that analyze multiple features, including color,

light distribution, and structural components. Would you like a

demonstration on how ML might analyze similar images?
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e C(Clearly a spiral galaxy, with visible spiral arms and a

bright core.

e Likely a star-forming galaxy, given the structured arms
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JADES Team

This classification can be refined using tools such as machine
learning models that analyze multiple features, including color,
light distribution, and structural components. Would you like a

demonstration on how ML might analyze similar images?
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e Case 1 - traditional method

» Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

* The input have to be well structured

* Pros: every step is well defined, minimal hyper-parameter tuning
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* Magie



Case 1: traditional methods

ML-101: iris flowers classification

Features

(can be n-D pixels, Some linear algebra Classification

(Not a black box!) [setosa, versicolor, virginica]
[Random Forest, SVM, etc.] [SF/QG/AGN with probability]

measurements, etc.)
[Length of the petal / sepal]
[photometry /
parametric shapes ]

A very helpful notebook: https://github.com/Apaulgithub/oibsip taskno-

Iris setosa Iris versicolor Iris virginica

lassification-1024x367.png


https://github.com/Apaulgithub/oibsip_taskno1

Case 2: Automatic segmentation, de-blending, measurements

Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

arXiv: 2409.11464

172813, z=3.7 209962, z=2.3

F444W/F200W/FO90W F335M/F300M/F250M F356W/F335M/F277W F210M/F182M/F150W
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Case 2: Automatic segmentation, de-blending, measurements

Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

« DBSCAN (Ester et al. 1995): Density-based
spatial clustering of applications with noise

* Arbitrarily-shaped clusters

* Arbitrary number of clusters (vs k-means)
* Robust to outliers and noise

* Fast

* Grouping pixels based on their density in n-
D space (color, flux, etc)

* https://scikit-learn.org/stable/modules/
generated/sklearn.cluster. DBSCAN.html Y.Zhu+24b




Case 2: Automatic segmentation, de-blending, measurements

Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

sklearn.cluster DBSCAN
numpy as np
X = np.array([[1, 2], [2, 2], [2, 3],
[8, 71, [8, 8], [25, 80]])

clustering = DBSCAN(eps=3, min_samples=2).fit(X)
clustering. labels_

array([ o6, o, o, 1, 1, -1])
clustering

DBSCAN(eps=3, min_samples=2)




Case 2: Automatic segmentation, de-blending, measurements

Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

sklearn. cluster DBSCAN X =np.array([[x1, y1, flux1], ...[xn, yn,
fluxnl])

numpy as np
X = np.array([[1, 2], [2, 2], [2, 3],
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* eps: the parameter you need to tune
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clustering  Then measure each clusters (n_pix, total
DBSCAN(eps=3, min_samples=2) flux, axis ratio, gini, Al, etc.)




Case 2: Automatic segmentation, de-blending, measurements

Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

sklearn.cluster DBSCAN X =np.array([[x1, y1, flux1], ...[xn, yn,
fluxnl])

numpy as np
X = np.array([[1, 2], [2, 2], [2, 3],
[8, 7], [8, 8], [25, 80]])

* eps: the parameter you need to tune

cluste ring DBSCAN(EDS Sir min_samples 2).fit(X) . min_samp|es: the min Samp|e size to
cluste ring labels_ grow a cluster
array([ @, 0, o, 1, 1, -11)
clustering  Then measure each clusters (n_pix, total
DBSCAN(eps=3, min_samples=2) flux, axis ratio, gini, Al, etc.)

F182M . F210M .4 S : 43 FO9OW/F182M/R210M
emission line " continuu .. dﬁ)gc%s.sm / /
' DBSCAN-medium band
Rmf: 17.03 - .

I ' re erencgl)a 5

1|Ii;; {ll}

Omfs 1.83 N
-
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Example 202: galaxy de-blending (or can be sub-structure de-blending)
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Case 2: Automatic segmentation, de-blending, measurements

Example 202: galaxy de-blending (or can be sub-structure de-blending)

 Watershed segmentation: using
topographic features to separate
objects in an image.

 Robust to noise and irregular shapes

1. The Image is treated as a
topographic surface.

e 2. The algorithm identifies catchment
basins based on pixel intensity.

* 3. The algorithm floods basins from
user-defined markers.

4. The algorithm separates each energy
concentration region with watershed
boundaries.

Zhu+295, In prep

import numpy as np

from skimage.filters import sobel

from skimage.measure import Llabel

from skimage.segmentation import watershed

from skimage.feature import peak_local_max

from skimage.morphology import distance_transform_edt
def deblending(input_image, rms_noise):

Deblend a single-band image using a combination of thresholding, gradient magnitude, and
atershed segmentation.

author: Yongda Zhu

Args:

input_image (2D numpy array): The input image to be deblended.
rms_noise (float): The RMS noise level of the input image.
Returns:

labels (2D numpy array): The deblended labels.
binary_mask (2D numpy array): The binary mask used for deblending.

threshold = rms_noise * 3

binary_mask = input_image > threshold
gradient_magnitude = sobel(input_image)
distance = distance_transform_edt(binary_mask)

local_maxi = peak_local _max(distance, footprint=np.ones((3, 3)), min_distance=5,
labels=binary_mask)

local_maxi_mask = np.zeros_like(binary_mask, dtype=bool)
local _maxi_mask[tuple(local _maxi.T)] = True

markers, _ = label(local_maxi_mask)

labels = watershed(-distance, markers, mask=binary_ mask)
return labels, binary_mask



Case 2: Automatic segmentation, de-blending, measurements

Example 202: galaxy de-blending (or can be sub-structure de-blending)
Zhu+295, In prep
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Case 3: Neural Networks / Deep learning
Example 301: Vision Transformers (ViTs) — SAM by Meta

00 Meta [

i = =8 : —  mask decoder e SN
* N Image __  memory M e N — memory __ Memory
Vg encoder attention 4 4 4 ‘Ng  encoder bank

time . & SP prompt encoder e SR

t4 4

mask points box

https://segment-anything.com/ 1



Case 3: Neural Networks / Deep learning
Example 301: Vision Transformers (ViTs) — SAM by Meta

image
encoder

https://segment-anything.com/ 1



Case 3: Neural Networks

Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

Background Morpheus Classification
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Case 3: Neural Networks

Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 248:20 (37pp), 2020 May
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Figure 1. Diagram of a single block in the Morpheus neural network
architecture (Figure 2). Panel (c) shows a single block from the architecture,
parameterized by the number P (black) of block operations and the number Q
(purple) of convolutional artificial neurons (CANSs; Section A.3) in all of the
convolutional layers within the block. Panel (b) shows an example zoom-in
where there are P = 2 groups of Q = 4 block operations. Panel (a) shows a
zoom-in on a block operation, which consists of batch normalization, Q = 4
CANs, and a rectified linear unit (ReLU). In the notation of Equation (1), this
block operation would be written as OP4(X). 13
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Figure 1. Diagram of a single block in the Morpheus neural network g
architecture (Figure 2). Panel (c) shows a single block from the architecture, Q
parameterized by the number P (black) of block operations and the number Q N
(purple) of convolutional artificial neurons (CANSs; Section A.3) in all of the o
convolutional layers within the block. Panel (b) shows an example zoom-in 0.0
where there are P = 2 groups of Q = 4 block operations. Panel (a) shows a : :
zoom-in on a block operation, which consists of batch normalization, Q = 4 SpherOId Disk _ Irregu_le.“ . PS/Compact
CANs, and a rectified linear unit (ReLU). In the notation of Equation (1), this Morpheus Dominant Classification

block operation would be written as OP4(X). 13



Case 3: Neural Networks

Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

* Code: https://github.com/morpheus-project/morpheus-core

14
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Case 3: Neural Networks

Example 303: Encoder-decoder — predict parameters directly from images

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image B Conv + Batch Normalisation + RelLU Segmentation
B Pooling I Upsampling Softmax

SegNet: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

15
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Case 3: Neural Networks

Example 303: Encoder-decoder — predict parameters directly from images

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image B Conv + Batch Normalisation + RelLU Segmentation
B Pooling 1 Upsampling Softmax P

Can be changed to parameters,

e.d., Sersic index, etc.

SegNet: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

15


https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

Build your own code:

Case 3: Neural Networks

Example 303: Encoder-decoder — predict parameters directly from images

import tensorflow as tf
from tensorflow.keras import layers, models build_prediction_head(encoded_input):

prediction = layers.Dense(1l, activation='linear',

. name='sersic_index') (encoded_input)
input_shape = (64, 64, 1) return prediction .

build_encoder(input_shape): . : :
inputs = layers.Input(shape=input_shape) inputs, encoded = build_encoder(input_shape)

x = layers.Conv2D(32, (3, 3), activation='relu', padding='same') decoded = build_decoder(encoded)
(inputs) prediction = build_prediction_head(encoded)

x = layers.MaxPooling2D( (2, 2))(x)

x = layers.Conv2D(64, (3, 3), activation='relu', padding='same') (x)
x = layers.MaxPooling2D( (2, 2)) (x)

x = layers.Flatten() (x)

encoded = layers.Dense(128, activation='relu') (x)

return inputs, encoded

model = models.Model(inputs=inputs, outputs=[decoded, prediction])

model.compile(optimizer="'adam',
loss={"'conv2d_3': 'binary_crossentropy',

'sersic_index':

build_decoder(encoded_input):

x = layers.Dense(16 * 16 * 64, activation='relu') (encoded_input)

x = layers.Reshape((16, 16, 64))(x)

X layers.Conv2DTranspose(64, (3, 3), activation='relu',
padding="'same"') (x)

x = layers.UpSampling2D((2, 2))(x)

x = layers.Conv2DTranspose(32, (3, 3), activation='relu',
padding="'same") (x)

x = layers.UpSampling2D((2, 2))(x)

decoded = layers.Conv2D(1, (3, 3), activation='sigmoid',
padding="'same"') (x)

metrics={'sersic_index': 'mae'})

model.summary ()

return decoded

16
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e Case 1 - traditional method
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by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

* The input have to be well structured

* Pros: every step is well defined, minimal hyper-parameter tuning


mailto:yongdaz@arizona.edu

yongdaz@arizona.edu

Summary

e Case 1 - traditional method

» Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

* The input have to be well structured

* Pros: every step is well defined, minimal hyper-parameter tuning
e Case 2 - automatic feature extraction (unsupervised ML)

* Automatic segmentation, de-blending, measurements

* Pros: labor saving (really?) Cons: lots of debugging and hyper-parameter tuning


mailto:yongdaz@arizona.edu

yongdaz@arizona.edu

Summary

e Case 1 - traditional method

» Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

* The input have to be well structured
* Pros: every step is well defined, minimal hyper-parameter tuning
e Case 2 - automatic feature extraction (unsupervised ML)
* Automatic segmentation, de-blending, measurements
* Pros: labor saving (really?) Cons: lots of debugging and hyper-parameter tuning

 Case 3 - Deep Learning / Neural Network

* Magie


mailto:yongdaz@arizona.edu

