
Yongda Zhu (JWST NIRCam & MIRI Teams)

Galaxy Morphologies
X
Machine Learning
EURECA meeting
Feb 14, 2025

1

Yongda Zhu (JWST NIRCam & MIRI Teams)

Galaxy Morphologies
X
Machine Learning
EURECA meeting
Feb 14, 2025

1

⚠ I am not a professional Machine Learning
Engineer

Yongda Zhu (JWST NIRCam & MIRI Teams)

Galaxy Morphologies
X
Machine Learning
EURECA meeting
Feb 14, 2025

1

⚠ I am not a professional Machine Learning
Engineer

😀But at least some tricks work for galaxies!

GPT: “go and use ML!”

Image: https://jades.idies.jhu.edu  
JADES Team

2

https://jades.idies.jhu.edu

GPT: “go and use ML!”

Image: https://jades.idies.jhu.edu  
JADES Team

2

https://jades.idies.jhu.edu

GPT: “go and use ML!”

Image: https://jades.idies.jhu.edu  
JADES Team

2

https://jades.idies.jhu.edu

Machine learning basics
Dealing with galaxies

3

Machine learning basics
Dealing with galaxies

• Case 1 - traditional method

• Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

• The input have to be well structured

• Pros: every step is well defined, minimal hyper-parameter tuning

3

Machine learning basics
Dealing with galaxies

• Case 1 - traditional method

• Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

• The input have to be well structured

• Pros: every step is well defined, minimal hyper-parameter tuning

• Case 2 - automatic feature extraction (unsupervised ML)

• Automatic segmentation, de-blending, measurements

• Pros: labor saving (really?) Cons: lots of debugging and hyper-parameter tuning

3

Machine learning basics
Dealing with galaxies

• Case 1 - traditional method

• Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

• The input have to be well structured

• Pros: every step is well defined, minimal hyper-parameter tuning

• Case 2 - automatic feature extraction (unsupervised ML)

• Automatic segmentation, de-blending, measurements

• Pros: labor saving (really?) Cons: lots of debugging and hyper-parameter tuning

• Case 3 - Deep Learning / Neural Network

• Magic

3

Case 1: traditional methods
ML-101: iris flowers classification

Image: https://www.embedded-robotics.com/wp-content/uploads/2022/01/Iris-Dataset-Classification-1024x367.png

Features
(can be n-D pixels,

measurements, etc.)
[Length of the petal / sepal]

[photometry /
parametric shapes]

Some linear algebra
(Not a black box!)

[Random Forest, SVM, etc.]

Classification
[setosa, versicolor, virginica]
[SF/QG/AGN with probability]

A very helpful notebook: https://github.com/Apaulgithub/oibsip_taskno1

4

https://github.com/Apaulgithub/oibsip_taskno1

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

arXiv: 2409.11464

5

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

6

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

6

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• DBSCAN (Ester et al. 1995): Density-based
spatial clustering of applications with noise

• Arbitrarily-shaped clusters

• Arbitrary number of clusters (vs k-means)

• Robust to outliers and noise

• Fast

6

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• DBSCAN (Ester et al. 1995): Density-based
spatial clustering of applications with noise

• Arbitrarily-shaped clusters

• Arbitrary number of clusters (vs k-means)

• Robust to outliers and noise

• Fast

• Grouping pixels based on their density in n-
D space (color, flux, etc)

6

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• DBSCAN (Ester et al. 1995): Density-based
spatial clustering of applications with noise

• Arbitrarily-shaped clusters

• Arbitrary number of clusters (vs k-means)

• Robust to outliers and noise

• Fast

• Grouping pixels based on their density in n-
D space (color, flux, etc)

• https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.DBSCAN.html

6

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

7

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• X = np.array([[x1, y1, flux1], …[xn, yn,
fluxn]])

• eps: the parameter you need to tune

• min_samples: the min sample size to
grow a cluster

• Then measure each clusters (n_pix, total
flux, axis ratio, gini, AI, etc.)

7

Case 2: Automatic segmentation, de-blending, measurements
Example 201: searching for outflow candidates by looking for extended emission lines in medium band imaging

• X = np.array([[x1, y1, flux1], …[xn, yn,
fluxn]])

• eps: the parameter you need to tune

• min_samples: the min sample size to
grow a cluster

• Then measure each clusters (n_pix, total
flux, axis ratio, gini, AI, etc.)

7

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

8

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

8

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using
topographic features to separate
objects in an image.

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using
topographic features to separate
objects in an image.

• Robust to noise and irregular shapes

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using
topographic features to separate
objects in an image.

• Robust to noise and irregular shapes

• 1. The image is treated as a
topographic surface.

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using
topographic features to separate
objects in an image.

• Robust to noise and irregular shapes

• 1. The image is treated as a
topographic surface.

• 2. The algorithm identifies catchment
basins based on pixel intensity.

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using
topographic features to separate
objects in an image.

• Robust to noise and irregular shapes

• 1. The image is treated as a
topographic surface.

• 2. The algorithm identifies catchment
basins based on pixel intensity.

• 3. The algorithm floods basins from
user-defined markers.

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using
topographic features to separate
objects in an image.

• Robust to noise and irregular shapes

• 1. The image is treated as a
topographic surface.

• 2. The algorithm identifies catchment
basins based on pixel intensity.

• 3. The algorithm floods basins from
user-defined markers.

• 4. The algorithm separates each energy
concentration region with watershed
boundaries.

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

• Watershed segmentation: using
topographic features to separate
objects in an image.

• Robust to noise and irregular shapes

• 1. The image is treated as a
topographic surface.

• 2. The algorithm identifies catchment
basins based on pixel intensity.

• 3. The algorithm floods basins from
user-defined markers.

• 4. The algorithm separates each energy
concentration region with watershed
boundaries.

necessary imports
import numpy as np
from skimage.filters import sobel
from skimage.measure import label
from skimage.segmentation import watershed
from skimage.feature import peak_local_max
from skimage.morphology import distance_transform_edt
def deblending(input_image, rms_noise):
 """
 Deblend a single-band image using a combination of thresholding, gradient magnitude, and
watershed segmentation.
 author: Yongda Zhu
 Args:
 input_image (2D numpy array): The input image to be deblended.
 rms_noise (float): The RMS noise level of the input image.
 Returns:
 labels (2D numpy array): The deblended labels.
 binary_mask (2D numpy array): The binary mask used for deblending.
 """
 # Define a threshold for the bright regions (e.g., 3-sigma above the mean)
 threshold = rms_noise * 3
 binary_mask = input_image > threshold
 # Compute the gradient magnitude
 gradient_magnitude = sobel(input_image)
 # Compute a distance map for the binary mask
 distance = distance_transform_edt(binary_mask)
 # Identify local maxima for watershed segmentation
 local_maxi = peak_local_max(distance, footprint=np.ones((3, 3)), min_distance=5,
labels=binary_mask)
 # Convert local_maxi (coordinates) to a binary mask of the same shape as `binary_mask`
 local_maxi_mask = np.zeros_like(binary_mask, dtype=bool)
 local_maxi_mask[tuple(local_maxi.T)] = True # Convert coordinates to a mask
 # Create a markers array for watershed segmentation
 markers, _ = label(local_maxi_mask)
 # Apply watershed segmentation
 labels = watershed(-distance, markers, mask=binary_mask)
 return labels, binary_mask

Zhu+25, in prep

9

Case 2: Automatic segmentation, de-blending, measurements
Example 202: galaxy de-blending (or can be sub-structure de-blending)

Zhu+25, in prep

10

Case 3: Neural Networks / Deep learning
Example 301: Vision Transformers (ViTs) — SAM by Meta

11https://segment-anything.com/

Case 3: Neural Networks / Deep learning
Example 301: Vision Transformers (ViTs) — SAM by Meta

11https://segment-anything.com/

Case 3: Neural Networks
Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

12

Case 3: Neural Networks
Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

12

Case 3: Neural Networks
Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

13

Case 3: Neural Networks
Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

13

Case 3: Neural Networks
Example 302: Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

Hausen & Robertson: arXiv:1906.11248

• Code: https://github.com/morpheus-project/morpheus-core

14

https://github.com/morpheus-project/morpheus-core

Case 3: Neural Networks
Example 303: Encoder-decoder — predict parameters directly from images

15

SegNet: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

Case 3: Neural Networks
Example 303: Encoder-decoder — predict parameters directly from images

15

SegNet: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

Case 3: Neural Networks
Example 303: Encoder-decoder — predict parameters directly from images

15

Can be changed to parameters,
e.g., Sersic index, etc.

SegNet: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

https://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2644615

Case 3: Neural Networks
Example 303: Encoder-decoder — predict parameters directly from images

16

import tensorflow as tf
from tensorflow.keras import layers, models

Define input shape (e.g., 64x64 grayscale image of a galaxy)
input_shape = (64, 64, 1)

Encoder part
def build_encoder(input_shape):
 inputs = layers.Input(shape=input_shape)
 x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')
(inputs)
 x = layers.MaxPooling2D((2, 2))(x)
 x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x)
 x = layers.MaxPooling2D((2, 2))(x)
 x = layers.Flatten()(x)
 encoded = layers.Dense(128, activation='relu')(x)
 return inputs, encoded

Decoder part
def build_decoder(encoded_input):
 x = layers.Dense(16 * 16 * 64, activation='relu')(encoded_input)
 x = layers.Reshape((16, 16, 64))(x)
 x = layers.Conv2DTranspose(64, (3, 3), activation='relu',
padding='same')(x)
 x = layers.UpSampling2D((2, 2))(x)
 x = layers.Conv2DTranspose(32, (3, 3), activation='relu',
padding='same')(x)
 x = layers.UpSampling2D((2, 2))(x)
 decoded = layers.Conv2D(1, (3, 3), activation='sigmoid',
padding='same')(x)
 return decoded

Sérsic profile prediction head
def build_prediction_head(encoded_input):
 prediction = layers.Dense(1, activation='linear',
name='sersic_index')(encoded_input)
 return prediction

Combine the model
inputs, encoded = build_encoder(input_shape)
decoded = build_decoder(encoded)
prediction = build_prediction_head(encoded)

Define the complete model with two outputs: reconstruction and
Sérsic index
model = models.Model(inputs=inputs, outputs=[decoded, prediction])

Compile the model
model.compile(optimizer='adam',
 loss={'conv2d_3': 'binary_crossentropy', 'sersic_index':
'mse'},
 metrics={'sersic_index': 'mae'})

Model summary
model.summary()

galaxy_images = ... # Shape: (num_samples, 64, 64, 1)
sersic_labels = ... # Shape: (num_samples, 1)
model.fit(galaxy_images, {'conv2d_3': galaxy_images, 'sersic_index':
sersic_labels}, epochs=10, batch_size=32)

Build your own code:

Summary
yongdaz@arizona.edu

mailto:yongdaz@arizona.edu

Summary
yongdaz@arizona.edu

• Case 1 - traditional method

• Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

• The input have to be well structured

• Pros: every step is well defined, minimal hyper-parameter tuning

mailto:yongdaz@arizona.edu

Summary
yongdaz@arizona.edu

• Case 1 - traditional method

• Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

• The input have to be well structured

• Pros: every step is well defined, minimal hyper-parameter tuning

• Case 2 - automatic feature extraction (unsupervised ML)

• Automatic segmentation, de-blending, measurements

• Pros: labor saving (really?) Cons: lots of debugging and hyper-parameter tuning

mailto:yongdaz@arizona.edu

Summary
yongdaz@arizona.edu

• Case 1 - traditional method

• Extract features (brightness, color, axis ratio, etc.) by hand, pre-label (spiral/elliptical, SF/QG, AGN/non-AGN)
by hand, and then train a model (Random Forests, Support Vector Machine (SVM), Gaussian Process, etc.)

• The input have to be well structured

• Pros: every step is well defined, minimal hyper-parameter tuning

• Case 2 - automatic feature extraction (unsupervised ML)

• Automatic segmentation, de-blending, measurements

• Pros: labor saving (really?) Cons: lots of debugging and hyper-parameter tuning

• Case 3 - Deep Learning / Neural Network

• Magic

mailto:yongdaz@arizona.edu

